Combinatorial Formula for Modified Hall-Littlewood Polynomials

نویسنده

  • Anatol N. Kirillov
چکیده

We obtain new combinatorial formulae for modified Hall–Littlewood polynomials, for matrix elements of the transition matrix between the elementary symmetric polynomials and Hall-Littlewood’s ones, and for the number of rational points over the finite field of unipotent partial flag variety. The definitions and examples of generalized mahonian statistic on the set of transport matrices and dual mahonian statistic on the set of transport (0,1)–matrices are given. We also review known q–analogues of Littlewood–Richardson numbers and consider their possible generalizations. Some conjectures about multinomial fermionic formulae for homogeneous unrestricted one dimensional sums and generalized Kostka–Foulkes polynomials are formulated. Finally we suggest two parameter deformations of polynomials Pλμ(t) and one dimensional sums. Dedicated to Richard Askey on the occasion of his 65th birthday Résumé Nous obtenons des nouvelles formules combinatoires concernant les polynômes de Hall-Littlewood modifiés, la matrice de transition entre les functions symétriques élémentaires et celles de Hall-Littlewood, et le nombre de points rationnels sur la sous-variété de points fixes d’un élément unipotent d’une variété de drapeau sur un corps fini. On définie la notion de statistique mahonienne généralisee sur l’ensemble des matrices de transport, ainsi que son duale, et on en fournit des exemples. Ces definitions généralisent naturellement la définition de statistique mahonienne introduite par D. Foata.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial theory of Macdonald polynomials I: proof of Haglund's formula.

Haglund recently proposed a combinatorial interpretation of the modified Macdonald polynomials H(mu). We give a combinatorial proof of this conjecture, which establishes the existence and integrality of H(mu). As corollaries, we obtain the cocharge formula of Lascoux and Schutzenberger for Hall-Littlewood polynomials, a formula of Sahi and Knop for Jack's symmetric functions, a generalization o...

متن کامل

Combinatorial Formulas for Macdonald and Hall-Littlewood Polynomials

A breakthrough in the theory of (type A) Macdonald polynomials is due to Haglund, Haiman and Loehr, who exhibited a combinatorial formula for these polynomials in terms of fillings of Young diagrams. Recently, Ram and Yip gave a formula for the Macdonald polynomials of arbitrary type in terms of the corresponding affine Weyl group. In this paper, we show that a Haglund-Haiman-Loehr type formula...

متن کامل

Hall-Littlewood polynomials, alcove walks, and fillings of Young diagrams

A recent breakthrough in the theory of (type A) Macdonald polynomials is due to Haglund, Haiman and Loehr, who exhibited a combinatorial formula for these polynomials in terms of a pair of statistics on fillings of Young diagrams. The inversion statistic, which is the more intricate one, suffices for specializing a closely related formula to one for the type A Hall-Littlewood Q-polynomials (sph...

متن کامل

A Combinatorial Approach to the $q, t$-Symmetry Relation in Macdonald Polynomials

Using the combinatorial formula for the transformed Macdonald polynomials of Haglund, Haiman, and Loehr, we investigate the combinatorics of the symmetry relation H̃μ(x; q, t) = H̃μ∗(x; t, q). We provide a purely combinatorial proof of the relation in the case of Hall-Littlewood polynomials (q = 0) when μ is a partition with at most three rows, and for the coefficients of the square-free monomial...

متن کامل

Hall-littlewood Polynomials, Alcove Walks, and Fillings of Young Diagrams, I

A recent breakthrough in the theory of (type A) Macdonald polynomials is due to Haglund, Haiman and Loehr, who exhibited a combinatorial formula for these polynomials in terms of a pair of statistics on fillings of Young diagrams. The inversion statistic, which is the more intricate one, suffices for specializing a closely related formula to one for the type A Hall-Littlewood polynomials (spher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002